Prof. Chunlei Wan (Tsinghua University, China) presented high-performance inorganic / organic superlattices for flexible thermoelectric energy harvesting.

The authors showed thermoelectric properties of organic molecule cation intercalated TiS2 (electrochemically), which looks like superlattice (layered structure). They successfully reduced the thermal conductivity while maintain its rather high electrical conductivity. Positively charged organic cations play several important roles such as good donor (strong positive electric field), enhancement of two-dimensionality, and reducing agent of thermal conductivity.

Prof. Kyu Hyoung Lee (Kangwon National University, Korea) presented design and preparation of high performance thermoelectric materials with defect structures.

The authors showed interesting way to enhance thermoelectric figure of merit of several materials such as BiSbTe, BiTeSe, and half-Heusler. They successfully reduced the thermal conductivity by introducing dislocation arrays at around the grain boundaries. They achieved 30-50% enhancement of their zT.

Prof. Wei Liu (Wuhan University of Technology) presented an invited talk on “Growth and transport properties of tetradymite thin films”.

The authors discussed their interesting results for MBE grown Bi2Te3/Sb2Te3 superlattice and solid-solution thin films; for the film characterization used techniques such as STS to investigate topological insulator properties. For the solid-solution thin films the doping was controlled from n-type to p-type depending on the Bi/Sb ratio.

Dr. Jihui Yang ? (instead of Yonggao Yan; Wuhan University of Technology) presented a contributed talk on “Rapid fabrication of thermoelectric SnTe via non-equilibrium lased 3D printing and the finite element simulation”.

The authors were able to fabricate high-quality 25 µm-thick SnTe films with selective laser melting (SLM). By controlling the power of the laser and thereby decreasing the melting temperature used the quality of the films could be improved.